首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   2篇
航天技术   1篇
航天   1篇
  2021年   1篇
  2016年   1篇
  2011年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The fluxgate magnetometer experiment onboard the ROSETTA spacecraft aims to measure the magnetic field in the interaction region of the solar wind plasma with comet 67P/Churyumov-Gerasimenko. It consists of a system of two ultra light (about 28 g each ) triaxial fluxgate magnetometer sensors, mounted on the 1.5 m long spacecraft boom. The measurement range of each sensor is ±16384 nT with quantization steps of 31 pT. The magnetometer sensors are operated with a time resolution of up to 0.05 s, corresponding to a bandwidth of 0–10 Hz. This performance of the RPC-MAG sensors allows detailed analyses of magnetic field variations in the cometary environment. RPC-MAG furthermore is designed to study possible remnant magnetic fields of the nucleus, measurements which will be done in close cooperation with the ROSETTA lander magnetometer experiment ROMAP.  相似文献   
2.
3.
The emergence of the citric acid cycle is one of the most remarkable occurrences with regard to understanding the origin and evolution of metabolic pathways. Although the chemical steps of the cycle are preserved intact throughout nature, diverse organisms make wide use of its chemistry, and in some cases organisms use only a selected portion of the cycle. However, the origins of this cycle would have arisen in the more primitive anaerobic organism or even back in the proto-metabolism, which likely arose spontaneously under favorable prebiotic chemical conditions. In this context, we report that UV irradiation of formamide in the presence of titanium dioxide afforded 6 of the 11 carboxylic acid intermediates of the reductive version of the citric acid cycle. Since this cycle is the central metabolic pathway of contemporary biology, this report highlights the role of photochemical processes in the origin of the metabolic apparatus.  相似文献   
4.
The increasing number of commercial, technological and scientific missions for CubeSats poses several concerns about the topic of space junk and debris mitigation. As no regulation is currently in place, innovative solutions are needed to mitigate the impact that Low Earth Orbit objects can have during uncontrolled re-entry and the associated potential events of surface collision. We investigated the requirements, in terms of materials selection, for the development of a 3D-printed structural bus able to withstand loads during launch and in-orbit operations, with the objectives to be as light as possible and requiring the least amount of heat for demise during atmospheric re-entry. The selection indicated magnesium alloys as the best candidates to improve the reference material, aluminium 6061 T6, resulting in both mass-reduction and improved demisability. We also analysed how the relative importance of these two objectives can modify the selection of materials: if minimizing the heat to disintegration were valued more highly than lightness, for example, the new best candidates would become tin alloys. Our analysis, furthermore, suggested the importance of Liquid Crystal Polymer as the sole plastic material approaching the performance of the best metal choices. This contribution, thus, provides novel insight in the field of 3D-printed materials for the fast-growing CubeSat segment, complying with the debris mitigation initiatives promoted by space agencies and institutions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号